Industry Best Practices & Top Insights delivered to your Inbox.
Blog Product

Automate Campaign Content to Engage with 1:1 Product Recommendations

Mrinal Parekh Mrinal Parekh, Senior Manager at CleverTap, has expertise in product, consumer, and digital marketing, with previous roles at Razorpay and Amazon.
Automate Campaign Content to Engage with 1:1 Product Recommendations

The concept of recommendations has been around since Amazon first added “inspired by your shopping trends” or “top picks for you” to its website.
When customers are on the lookout for an item, they are hoping to find the best possible one out there. Their search is comprised of hundreds, if not thousands, of digital touchpoints. Through these interactions, customers expect brands to learn about them. In fact, they’re willing to spend more money if they receive a thoughtful, targeted experience.
While generating recommendations has become fairly standard, there continues to be an increasing level of frustration when they’re not personalized.
One of the key reasons is that growth teams have approached recommendations as a short-term product-centric strategy instead of a long-term brand strategy. So recommendations are seen as a means to drive more conversions on the website or app instead of using them as a sustainable way to increase customer lifetime value and loyalty and eventually optimize the end-to-end customer experience.

Use Recommendations for Long-Term Growth

So how do we bridge this gap from a short-term campaign strategy to a long-term growth strategy? How do we ensure that we account for rapidly evolving lifecycle stages?

  1. Use data science to map evolving consumption patterns
    Customers make purchase decisions on a number of factors that are constantly evolving. If growth teams can find a way to stay on top of these changes, they can provide the best possible experience while seeing a tangible boost in revenue.
    A report on personalization from Segment assessed how it impacts shoppers1. Findings show that 40% of consumers have purchased something more expensive than they had originally set out for. Moreover, nearly half (49%) of the shoppers made an impulse purchase after they received a personalized recommendation and a majority (85%) of them were very happy with their decision.
    It would be impossible to keep recommendations relevant to each customer in real-time without using a scalable data science model that works well for your business. Data science helps automate customer recommendations to not only make them relevant to each user but also to consider the dynamic changes that occur along the way.
    For example, if you recommend vacuum cleaners to someone who just bought one, that message is bound to be ignored.
    Similarly, if you recommend chocolates to a former chocoholic who’s now buying more fresh vegetables from your grocery app, you aren’t keeping up with her updated demands.
  2. Integrate your engagement strategy with recommendation strategy
    Unless your engagement tactics are connected to the recommendations tactics, customer experience will continue to be disconnected.
    A recent report2 on recommendations for ecommerce shows that the average number of items purchased increases by 50% when customers actually engaged with the recommended items – through clicks, impressions or purchases. It further finds that the average order value of a recommendation that catches a customer’s attention increases by nearly 33%.
    This means that once you have created a set of data science enabled recommendations, you want to find a way to engage with those recommendations at the best possible time on any number of channels.

Enhance Engagement with Product Recommendations

Using CleverTap, you can easily identify and automate ‘who to send’ and ‘when to send’ your campaigns.
But now with Product Recommendations, we’ve taken the next step to assist you with your engagement strategy. With this latest feature, you can automate the ‘what’ of customer interactions with 1:1 personalized recommendations that dynamically adapt to customer purchase behavior, buying patterns, and usage trends.
Using an AI-powered system that allows complete control over merchandising, growth teams can create intuitive targeting rules for millions of catalog items. This means our recommendation engine can generate recommendations unique to each user.
Once the recommendation engine generates specific content for each user, growth teams can send these out via In-App, Push, Webhooks, SMS, and App Inbox. They can build rich marketing communications using images, videos, deep or external links, with custom fields in their catalog definition to personalize the message. Omnichannel campaigns can also be triggered based on specific user behavior such as “add to cart” or “searched” to bring further context.

Use Data Science to Avoid Recommendations Becoming Irrelevant

You can create multiple types of recommendations based on different filter criteria.

  1. Make real-time recommendations based on user actions
    e.g. Trigger In-App recommendation when a user adds to cart.

  2. Customize recommendations based on customer segments to upsell and optimize inventory
    e.g. Generate recommendations with only high value items for champion users.
    Generate recommendations with only high value items for champion users.
  3. Include/exclude content recommendations from a specific genre or language
    e.g. Only provide recommendations for English content while excluding all other languages
    Include Exclude Filter
  4. Personalize campaign content with 20 custom fields (max) and multiple recommendations
    e.g. For a customer who left 1 item in her cart, recommend 5 items (2 based on items purchased together; 1 based on the item added to cart but viewed together; 1 trending item and 1 high margin item)
    Personalize campaign content

Use Cases with One or More Recommendations

Vertical/Use CaseDescription

Ecommerce: Increase upsell opportunities using multiple custom recommendations in one messageFor example, trigger an In-App message in real time when a user adds an item to cart:
– Recommend other items frequently purchased or searched together in the last 30 days AND
– Recommend only high margin items often added to cart together 
Media/OTT: Increase viewing time per user with recommendations optimized to user preferencesFor example, once a user completes watching a teaser video of a fantasy TV series:
– Recommend other shows that have been watched together with fantasy TV shows in the last 10 days AND
– Exclude already watched content from within recommendations AND
– Include popular shows in that genre
Travel: Optimize customer experience by avoiding repetitions and ‘not available’ scenariosFor example, for a user browsing for a hotel on your website:
– Enrich user experience by limiting the recommendations to only hotels that are available using live item catalog capability to avoid ‘No longer available’ scenarios
– If the user has seen the top 3 properties, serve the next 3 properties to avoid repetitive recommendations
– Recommend a list of trending hotels

How Engagement with Personalized Recommendations Benefits Your Business

  1. Increases Average Order Value/Upsell Opportunity
    Send relevant suggestions so customers can view and consider more items to complete their purchase. Increase order value by revealing new categories that they would otherwise have missed.
  2. Optimizes Product Discovery
    Optimize product recommendations for customers with the serendipitous discovery of items they may not uncover naturally, but would likely be interested in. As a result, the distribution of product sales should become more diverse.
  3. Improves Engagement & Retention with Omnichannel Orchestration
    Build rich marketing communications using images, videos, deep or external links with custom fields in your catalog definition. Providing relevant and personalized engagement increases retention over the long term.
  4. Influences Usage and Builds Habits
    Recommendations help in driving usage by triggering users into taking actions like watching another movie, purchasing another product, reading another article. Gradually, this assists in building habits that keep users coming back to your app for more.

Final Thoughts

The goal of our recommendation algorithm is to provide diversity and novelty, so you can expect product recommendations that have low count to figure in the top recommendations while maintaining the relevancy of engagement. This industry-leading capability will allow you to create unique recommendations for each user from your product catalog. This will then be available for you to run your engagement strategies through channels like In-App, Push, and more. Each user, based on their generated recommendation, will receive a relevant and highly personalized message.
CleverTap’s Product Recommendation is currently in Beta. You can write to us at to get a quick demo or request early access to try it out.

Last updated on March 30, 2024